Programming Collective Intelligence

Programming Collective Intelligence Author Toby Segaran
ISBN-10 9780596550684
Year 2007-08-16
Pages 362
Language en
Publisher "O'Reilly Media, Inc."
DOWNLOAD NOW READ ONLINE

Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect

Programming Collective Intelligence

Programming Collective Intelligence Author Toby Segaran
ISBN-10 9780596517601
Year 2007-08-16
Pages 360
Language en
Publisher "O'Reilly Media, Inc."
DOWNLOAD NOW READ ONLINE

Provides information on building Web 2.0 applications that have the capability to mine data created by Internet applications.

                  Author Toby Segaran
ISBN-10 7564111399
Year 2007
Pages 334
Language zh-CN
Publisher
DOWNLOAD NOW READ ONLINE

本书将你带入机器学习和统计的世界,并且阐释了如何从你和他人每天收集的信息中获得关于用户体验、市场营销、个性品味及人类行为的结论。

Machine Learning for Hackers

Machine Learning for Hackers Author Drew Conway
ISBN-10 9781449330538
Year 2012-02-13
Pages 324
Language en
Publisher "O'Reilly Media, Inc."
DOWNLOAD NOW READ ONLINE

If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data

Algorithms of the Intelligent Web

Algorithms of the Intelligent Web Author Douglas G McIlwraith
ISBN-10 1617292583
Year 2016-09-08
Pages 240
Language en
Publisher Manning Publications
DOWNLOAD NOW READ ONLINE

Summary Algorithms of the Intelligent Web, Second Edition teaches the most important approaches to algorithmic web data analysis, enabling you to create your own machine learning applications that crunch, munge, and wrangle data collected from users, web applications, sensors and website logs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Valuable insights are buried in the tracks web users leave as they navigate pages and applications. You can uncover them by using intelligent algorithms like the ones that have earned Facebook, Google, and Twitter a place among the giants of web data pattern extraction. About the Book Algorithms of the Intelligent Web, Second Edition teaches you how to create machine learning applications that crunch and wrangle data collected from users, web applications, and website logs. In this totally revised edition, you'll look at intelligent algorithms that extract real value from data. Key machine learning concepts are explained with code examples in Python's scikit-learn. This book guides you through algorithms to capture, store, and structure data streams coming from the web. You'll explore recommendation engines and dive into classification via statistical algorithms, neural networks, and deep learning. What's Inside Introduction to machine learning Extracting structure from data Deep learning and neural networks How recommendation engines work About the Reader Knowledge of Python is assumed. About the Authors Douglas McIlwraith is a machine learning expert and data science practitioner in the field of online advertising. Dr. Haralambos Marmanis is a pioneer in the adoption of machine learning techniques for industrial solutions. Dmitry Babenko designs applications for banking, insurance, and supply-chain management. Foreword by Yike Guo. Table of Contents Building applications for the intelligent web Extracting structure from data: clustering and transforming your data Recommending relevant content Classification: placing things where they belong Case study: click prediction for online advertising Deep learning and neural networks Making the right choice The future of the intelligent web Appendix - Capturing data on the web

Data Analysis with Open Source Tools

Data Analysis with Open Source Tools Author Philipp K. Janert
ISBN-10 9781449396657
Year 2010-11-11
Pages 540
Language en
Publisher "O'Reilly Media, Inc."
DOWNLOAD NOW READ ONLINE

Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications. Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you. Use graphics to describe data with one, two, or dozens of variables Develop conceptual models using back-of-the-envelope calculations, as well asscaling and probability arguments Mine data with computationally intensive methods such as simulation and clustering Make your conclusions understandable through reports, dashboards, and other metrics programs Understand financial calculations, including the time-value of money Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations Become familiar with different open source programming environments for data analysis "Finally, a concise reference for understanding how to conquer piles of data."--Austin King, Senior Web Developer, Mozilla "An indispensable text for aspiring data scientists."--Michael E. Driscoll, CEO/Founder, Dataspora

Think Stats

Think Stats Author Allen B. Downey
ISBN-10 9781491907375
Year 2014-10-16
Pages 226
Language en
Publisher "O'Reilly Media, Inc."
DOWNLOAD NOW READ ONLINE

If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts. New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries. Develop an understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Import data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data

Information Retrieval

Information Retrieval Author David A. Grossman
ISBN-10 1402030045
Year 2004-10-21
Pages 332
Language en
Publisher Springer Science & Business Media
DOWNLOAD NOW READ ONLINE

Interested in how an efficient search engine works? Want to know what algorithms are used to rank resulting documents in response to user requests? The authors answer these and other key information retrieval design and implementation questions. This book is not yet another high level text. Instead, algorithms are thoroughly described, making this book ideally suited for both computer science students and practitioners who work on search-related applications. As stated in the foreword, this book provides a current, broad, and detailed overview of the field and is the only one that does so. Examples are used throughout to illustrate the algorithms. The authors explain how a query is ranked against a document collection using either a single or a combination of retrieval strategies, and how an assortment of utilities are integrated into the query processing scheme to improve these rankings. Methods for building and compressing text indexes, querying and retrieving documents in multiple languages, and using parallel or distributed processing to expedite the search are likewise described. This edition is a major expansion of the one published in 1998. Besides updating the entire book with current techniques, it includes new sections on language models, cross-language information retrieval, peer-to-peer processing, XML search, mediators, and duplicate document detection.

Mining the Social Web

Mining the Social Web Author Matthew A. Russell
ISBN-10 9781449368227
Year 2013-10-04
Pages 448
Language en
Publisher "O'Reilly Media, Inc."
DOWNLOAD NOW READ ONLINE

How can you tap into the wealth of social web data to discover who’s making connections with whom, what they’re talking about, and where they’re located? With this expanded and thoroughly revised edition, you’ll learn how to acquire, analyze, and summarize data from all corners of the social web, including Facebook, Twitter, LinkedIn, Google+, GitHub, email, websites, and blogs. Employ the Natural Language Toolkit, NetworkX, and other scientific computing tools to mine popular social web sites Apply advanced text-mining techniques, such as clustering and TF-IDF, to extract meaning from human language data Bootstrap interest graphs from GitHub by discovering affinities among people, programming languages, and coding projects Build interactive visualizations with D3.js, an extraordinarily flexible HTML5 and JavaScript toolkit Take advantage of more than two-dozen Twitter recipes, presented in O’Reilly’s popular "problem/solution/discussion" cookbook format The example code for this unique data science book is maintained in a public GitHub repository. It’s designed to be easily accessible through a turnkey virtual machine that facilitates interactive learning with an easy-to-use collection of IPython Notebooks.

Programming the Semantic Web

Programming the Semantic Web Author Toby Segaran
ISBN-10 9781449379179
Year 2009-07-09
Pages 302
Language en
Publisher "O'Reilly Media, Inc."
DOWNLOAD NOW READ ONLINE

With this book, the promise of the Semantic Web -- in which machines can find, share, and combine data on the Web -- is not just a technical possibility, but a practical reality Programming the Semantic Web demonstrates several ways to implement semantic web applications, using current and emerging standards and technologies. You'll learn how to incorporate existing data sources into semantically aware applications and publish rich semantic data. Each chapter walks you through a single piece of semantic technology and explains how you can use it to solve real problems. Whether you're writing a simple mashup or maintaining a high-performance enterprise solution,Programming the Semantic Web provides a standard, flexible approach for integrating and future-proofing systems and data. This book will help you: Learn how the Semantic Web allows new and unexpected uses of data to emerge Understand how semantic technologies promote data portability with a simple, abstract model for knowledge representation Become familiar with semantic standards, such as the Resource Description Framework (RDF) and the Web Ontology Language (OWL) Make use of semantic programming techniques to both enrich and simplify current web applications

Mahout in Action

Mahout in Action Author Sean Owen
ISBN-10 1935182684
Year 2012
Pages 387
Language en
Publisher Manning Publications
DOWNLOAD NOW READ ONLINE

Presents information on machine learning through the use of Apache Mahout, covering such topics as using group data to make individual recommendations, finding logical clusters, and filtering classifications.

Handbook of Collective Intelligence

Handbook of Collective Intelligence Author Thomas W. Malone
ISBN-10 9780262029810
Year 2015-10-30
Pages 232
Language en
Publisher MIT Press
DOWNLOAD NOW READ ONLINE

Experts describe the latest research in a rapidly growing multidisciplinary field, the study of groups of individuals acting collectively in ways that seem intelligent.

Recommender Systems

Recommender Systems Author Dietmar Jannach
ISBN-10 9781139492591
Year 2010-09-30
Pages
Language en
Publisher Cambridge University Press
DOWNLOAD NOW READ ONLINE

In this age of information overload, people use a variety of strategies to make choices about what to buy, how to spend their leisure time, and even whom to date. Recommender systems automate some of these strategies with the goal of providing affordable, personal, and high-quality recommendations. This book offers an overview of approaches to developing state-of-the-art recommender systems. The authors present current algorithmic approaches for generating personalized buying proposals, such as collaborative and content-based filtering, as well as more interactive and knowledge-based approaches. They also discuss how to measure the effectiveness of recommender systems and illustrate the methods with practical case studies. The final chapters cover emerging topics such as recommender systems in the social web and consumer buying behavior theory. Suitable for computer science researchers and students interested in getting an overview of the field, this book will also be useful for professionals looking for the right technology to build real-world recommender systems.